Chapitre 22 : Matrices et applications linéaires

Application linéaire canoniquement associé à une matrice

Exercice 1: Soit
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'application linéaire canoniquement associée à B.

- 1. Montrer que B est inversible et déterminer B^{-1} .
- 2. Montrer que f est un automorphisme et déterminer f^{-1} .

Exercice 2: Soit
$$\theta \in \mathbb{R}$$
. On pose $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Soit $f_{\theta} \in \mathcal{L}(\mathbb{R}^2)$ l'application linéaire canoniquement associée à R_{θ} .

- 1. On dit que f_{θ} est la rotation vectorielle du plan d'angle θ . Pourquoi ?
- 2. Soient θ et $\varphi \in \mathbb{R}$. Calculer et simplifier le produit $R_{\theta}R_{\varphi}$. En déduire une expression simple de $f_{\theta} \circ f_{\varphi}$.
- 3. Soit $\theta \in \mathbb{R}$. Montrer que R_{θ} est inversible, et calculer son inverse. En déduire que f_{θ} est un automorphisme et déterminer sa bijection réciproque.
- 4. Soit $\theta \in \mathbb{R}$. Calculer $(R_{\theta})^n$ pour tout $n \in \mathbb{Z}$. En déduire une expression de $(f_{\theta})^n$ pour tout $n \in \mathbb{Z}$.

Exercice 3: Soit
$$F = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'application linéaire canoniquement associée à F.

- 1. Montrer que f est un endomorphisme particulier et déterminer ses espaces vectoriels caractéristiques.
- 2. Donner une base de \mathbb{R}^3 dans laquelle la matrice de f est diagonale.

Rang

 $\underline{\textbf{Exercice 4:}}$ Calculer le rang des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 1 & 2 & 2 \\ 3 & 2 & 3 & -2 \\ 1 & 1 & 1 & -4 \\ 5 & 2 & 5 & 0 \end{pmatrix}$$

Systèmes linéaires

Exercice 5: Soient $a,b,c \in \mathbb{R}$. Résoudre le système d'inconnues réelles x,y,z suivant:

$$\begin{cases} x + y + z = 0 \\ (b+c)x + (a+c)y + (a+b)z = 0 \\ bcx + acy + abz = 0 \end{cases}$$

Changements de bases

Exercice 6: Soit \mathscr{B} la base canonique de \mathbb{R}^2 . Soit $\mathscr{B}' = ((1,2),(1,3))$.

- 1. Montrer que \mathscr{B}' est une base de \mathbb{R}^2 , et écrire les matrices de passage de \mathscr{B} dans \mathscr{B}' et de \mathscr{B}' dans \mathscr{B} .
- 2. Déterminer les coordonnées de v = (1, 4) dans la base \mathscr{B}' .
- 3. Écrire la matrice de l'endomorphisme $f:(x,y)\longmapsto (2x+y,x-y)$ de \mathbb{R}^2 dans la base \mathcal{B} , puis dans la base \mathcal{B}' .

Exercice 7: Soit u l'application linéaire canoniquement associée à $\begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix}$. On pose $e'_1 = (1,0,1), \ e'_2 = (0,0,1), \ e'_3 = (1,1,1), \ f'_1 = (0,1)$ et $f'_2 = (1,-1)$. Vérifier que $\mathcal{E}' = (e'_1,e'_2,e'_3)$ et $\mathcal{F}' = (f'_1,f'_2)$ sont des bases respectives de \mathbb{R}^3 et de \mathbb{R}^2 , puis déterminer la matrice de u dans les bases \mathcal{E}' et \mathcal{F}' .

Exercice 8: On note \mathcal{B} la base canonique de $\mathbb{R}_3[X]$.

- 1. Montrer que la famille $\mathscr{B}' = (1, X, X(X-1), X(X-1)(X-2))$ est une base de $\mathbb{R}_3[X]$, et déterminer la matrice de passage P de \mathscr{B} à \mathscr{B}' .
- 2. Déterminer les coordonnées du polynôme $(X-1)^3$ dans la base \mathscr{B}' .
- 3. Soit u l'endomorphisme de $\mathbb{R}_3[X]$ défini par u(P) = P'. Déterminer la matrice de u dans la base \mathscr{B} puis la matrice de u dans la base \mathscr{B}' .

Exercice 9: Soit E un \mathbb{R} -espace vectoriel de dimension 3. Soit $f \in \mathcal{L}(E)$ telle que $f^2 \neq 0$ et $f^3 = 0$.

Montrer qu'il existe une base de E dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Chapitre 22 : Matrices et applications linéaires

Exercice 10: Soit
$$C = \begin{pmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'application linéaire canoniquement associée à C.

- 1. Déterminer Im(C). En déduire le rang de f et une base de Im(f).
- 2. Déterminer Ker(C). En déduire une base de Ker(f).
- 3. Montrer que $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$, puis déterminer une base \mathscr{B}' de \mathbb{R}^3 adaptée à cette décomposition.
- 4. Calculer la matrice de f dans la base \mathscr{B}' .

Exercice 11: Soit $F = \{(x, y, z) \in \mathbb{R}^3, x - 2y + 3z = 0\}$ et G = Vect((1, -2, 3)).

- 1. Montrer que $\mathbb{R}^3 = F \oplus G$. Dans la suite, on note p la projection sur F parallèlement à G, s la symétrie par rapport à F parallèlement à G.
- 2. On cherche à calculer la matrice de p dans la base canonique de \mathbb{R}^3 . On note La trace d'une matrice est donc la somme de ses coefficients diagonaux. A cette matrice.
 - (a) Première méthode: Calculer p(v) pour v un vecteur quelconque de \mathbb{R}^3 . En déduire l'expression de A.
 - (b) Seconde méthode : Trouver une base (e'_1, e'_2, e'_3) de \mathbb{R}^3 adaptée à la décomposition $F \oplus G$. Déterminer la matrice de p dans cette base, puis dans la base canonique à l'aide d'une formule de changement de base.
- 3. Calculer la matrice de s dans la base canonique de \mathbb{R}^3 .

Exercice 12: Soit f l'endomorphisme de $\mathbb{R}_2[X]$ définie par

$$f: P \mapsto P(0)(1-X^2) + P'(0)(X+X^2) + P(-1)(-X^2-2X+2)$$

- 1. Déterminer la matrice de f dans la base $\mathscr{B} = (1, X, X^2)$.
- 2. Soit $P_1 = 1 X X^2$, $P_2 = -1 + X + 2X^2$ et $P_3 = 1 X^2$. Montrer que $\mathscr{B}' = (P_1, P_2, P_3)$ est une base de $\mathbb{R}_2[X]$.
- 3. Déterminer la matrice de f dans \mathscr{B}' .
- 4. En déduire une expression de $\mathrm{Mat}_{\mathscr{B}}(f^n)$ en utilisant un changement de base.

Matrice inversible et automorphisme

Exercice 13: Inverse de la matrice du triangle de Pascal. Soit $n \in \mathbb{N}$.

Considérons la matrice $A = (a_{i,j}) \in \mathcal{M}_{n+1}(\mathbb{R})$ définie par $a_{i,j} = \binom{j-1}{i-1}$.

Montrer que la matrice A est inversible et déterminer son inverse. On pourra s'aider de la matrice de l'automorphisme $f: P \mapsto P(X+1)$ de $\mathbb{R}_n[X]$ dans la base canonique.

Matrices semblables

Exercice 14: Soit $n \in \mathbb{N}^*$. L'application trace est la forme linéaire suivante :

tr:
$$\mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$$

 $A = (a_{i,j})_{i,j \in [1;n]} \longmapsto \sum_{i=1}^n a_{i,i}$

- 1. Calculer $tr(I_n)$.
- 2. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$, montrer que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. En déduire que si A et B sont semblables alors tr(A) = tr(B). La réciproque est-elle vraie ?
- 3. Montrer que $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$ ne sont pas semblables.